Олимпиадные задачи по математике для 1-7 класса - сложность 3-5 с решениями

Боря задумал целое число, большее 100. Кира называет целое число, большее 1. Если Борино число делится на это число, Кира выиграла, иначе Боря вычитает из своего числа названное, и Кира называет следующее число. Ей запрещается повторять числа, названные ранее. Если Борино число станет отрицательным – Кира проигрывает. Есть ли у неё выигрышная стратегия?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка