Олимпиадные задачи по математике для 10-11 класса - сложность 2 с решениями

Гости за круглым столом ели изюм из корзины с 2011 изюминками. Оказалось, что каждый съел либо вдвое больше, либо на 6 меньше изюминок, чем его сосед справа. Докажите, что были съедены не все изюминки.

Вася и Петя играют в следующую игру. На доске написаны два числа: <sup>1</sup>/<sub>2009</sub> и <sup>1</sup>/<sub>2008</sub>. На каждом ходу Вася называет любое число <i>x</i>, а Петя увеличивает одно из чисел на доске (какое захочет) на <i>x</i>. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка