Олимпиадные задачи по математике для 10 класса - сложность 4 с решениями
Для каждого простого <i>p</i> найдите наибольшую натуральную степень числа <i>p</i>!, на которую делится число (<i>p</i>²)!.
Через каждую вершину четырехугольника проведена прямая, проходящая через центр вписанной в него окружности. Три из этих прямых обладают тем свойством, что каждая из них делит площадь четырехугольника на две равновеликие части. a) Докажите, что и четвертая прямая обладает тем же свойством. б) Какие значения могут принимать углы этого четырехугольника, если один из них равен72<i><sup>o</sup> </i>?