Олимпиадные задачи по математике для 9 класса - сложность 1-4 с решениями

Для каждого простого <i>p</i> найдите наибольшую натуральную степень числа <i>p</i>!, на которую делится число (<i>p</i>²)!.

Через каждую вершину четырехугольника проведена прямая, проходящая через центр вписанной в него окружности. Три из этих прямых обладают тем свойством, что каждая из них делит площадь четырехугольника на две равновеликие части. a) Докажите, что и четвертая прямая обладает тем же свойством. б) Какие значения могут принимать углы этого четырехугольника, если один из них равен72<i><sup>o</sup> </i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка