Олимпиадные задачи по математике для 5-9 класса - сложность 3-4 с решениями
Дана четырёхугольная пирамида, в которую можно вписать сферу. Точку касания этой сферы с основанием пирамиды спроектировали на рёбра основания. Докажите, что все проекции лежат на одной окружности.
Дан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.
Дан четырёхугольник <i>ABCD</i>. Его противоположные стороны <i>AB</i> и <i>CD</i> пересекаются в точке <i>K</i>. Его диагонали пересекаются в точке <i>L</i>. Известно, что прямая <i>KL</i> проходит через центр тяжести вершин четырёхугольника <i>ABCD</i>. Докажите, что <i>ABCD</i> – трапеция.
При каких $n$ можно замостить плоскость равными фигурами, ограниченными $n$ дугами окружностей?
На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно четыре отмеченных точки, а через каждую отмеченную точку проходят ровно четыре окружности?
На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно пять отмеченных точек, а через каждую отмеченную точку проходят ровно пять окружностей?
Окружности $\omega_1$, $\omega_2$ с центрами $O_1$, $O_2$ соответственно лежат одна вне другой. На этих окружностях взяты точки $C_1$, $C_2$, лежащие по одну сторону от прямой $O_1O_2$. Луч $O_1C_1$ пересекает $\omega_2$ в точках $A_2$, $B_2$, а луч $O_2C_2$ пересекает $\omega_1$ в точках $A_1$, $B_1$. Докажите, что $\angle A_1O_1B_1=\angle A_2B_2C_2$ тогда и только тогда, когда $C_1C_2\parallel O_1O_2$.
На поверхности равногранного тетраэдра сидят два муравья. Докажите, что они могут встретиться, преодолев в сумме расстояние, не превосходящее диаметра окружности, описанной около грани тетраэдра.
Дан треугольник <i>ABC, O</i> – центр его описанной окружности. Проекции точек <i>D</i> и <i>X</i> на стороны треугольника лежат на прямых <i>l</i> и <i>L</i>, причём <i>l || XO</i>. Докажите, что прямая <i>L</i> образует равные углы с прямыми <i>AB</i> и <i>CD</i>.
На доске написаны <i>N</i> ≥ 9 различных неотрицательных чисел, меньших единицы. Оказалось, что для любых восьми различных чисел с доски на ней найдётся такое девятое, отличное от них, что сумма этих девяти чисел целая. При каких <i>N</i> это возможно?
В угол с вершиной <i>A</i> вписана окружность, касающаяся сторон угла в точках <i>B</i> и <i>C</i>. Прямая, проходящая через <i>A</i>, пересекает окружность в точках <i>D</i> и <i>E</i>. Хорда <i>BX</i> параллельна прямой <i>DE</i>. Докажите, что отрезок <i>XC</i> проходит через середину отрезка <i>DE</i>.
В четырёхугольнике <i>ABCD</i> углы <i>A</i> и <i>C</i> – прямые. На сторонах <i>AB</i> и <i>CD</i> как на диаметрах построены окружности, пересекающиеся в точках <i>X</i> и <i>Y</i>. Докажите, что прямая <i>XY</i> проходит через середину <i>K</i> диагонали <i>AC</i>
Точка <i>M</i> – середина стороны <i>AC</i> треугольника <i>ABC</i>. На отрезках <i>AM</i> и <i>CM</i> выбраны точки <i>P</i> и <i>Q</i> соответственно таким образом, что <i>PQ = <sup>AC</sup></i>/<sub>2</sub>. Описанная окружность треугольника <i>ABQ</i> второй раз пересекает сторону <i>BC</i> в точке <i>X</i>, а описанная окружность треугольника <i>BCP</i>, второй раз пересекает сторону <i>AB</i> в точке <i>Y</i>. Докажите, что четырёхугольник <i>BXMY</i> – вписанный.