Олимпиадные задачи по математике для 9-10 класса - сложность 4 с решениями
Пусть <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> – высоты неравнобедренного остроугольного треугольника <i>ABC</i>; описанные окружности треугольников <i>ABC</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i>, вторично пересекаются в точке <i>P</i>, <i>Z</i> – точка пересечения касательных к описанной окружности треугольника <i>ABC</i>, проведённых в точках <i>A</i> и <i>B</i>. Докажите, что прямые <i>AP</i>, <i>BC</i> и <i>ZC</i><sub>1</sub> пересекаются в одной точке.
К двум окружностям <i>w</i><sub>1</sub> и <i>w</i><sub>2</sub>, пересекающимся в точках <i>A</i> и <i>B</i>, проведена их общая касательная <i>CD</i> (<i>C</i> и <i>D</i> – точки касания соответственно, точка <i>B</i> ближе к прямой <i>CD</i>, чем <i>A</i>). Прямая, проходящая через <i>A</i>, вторично пересекает <i>w</i><sub>1</sub> и <i>w</i><sub>2</sub> в точках и <i>L</i> соответственно (<i>A</i> лежит между <i>K</i> и <i>L</i> ). Прямые <i>KC</i> и <i>LD</i> пересекаются в точке <i>P</i>. Докажите, ч...