Олимпиадные задачи по математике для 2-10 класса - сложность 4 с решениями

Вокруг треугольника <i>ABC</i> описана окружность. Пусть <i>X</i> – точка внутри окружности, <i>K</i> и <i>L</i> – точки пересечения этой окружности и прямых <i>BX</i> и <i>CX</i> соответственно. Прямая <i>LK</i> пересекает прямую <i>AB</i> в точке <i>E</i>, а прямую <i>AC</i> в точке <i>F</i>. Найдите геометрическое место таких точек <i>X</i>, что описанные окружности треугольников <i>AFK</i> и <i>AEL</i> касаются.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка