Олимпиадные задачи по математике для 5-9 класса - сложность 3 с решениями
Можно ли так раскрасить все клетки бесконечной клетчатой плоскости в белый и чёрный цвета, чтобы каждая вертикальная прямая и каждая горизонтальная прямая пересекали конечное число белых клеток, а каждая наклонная прямая конечное число чёрных?
Дан такой выпуклый четырехугольник <i>ABCD</i>, что <i>AB = BC</i> и <i>AD = DC</i>. Точки <i>K, L</i> и <i>M</i> – середины отрезков <i>AB, CD</i> и <i>AC</i> соответственно. Перпендикуляр, проведенный из точки <i>A</i> к прямой <i>BC</i>, пересекается с перпендикуляром, проведенным из точки <i>C</i> к прямой <i>AD</i>, в точке <i>H</i>. Докажите, что прямые <i>KL</i> и <i>HM</i> перпендикулярны.