Олимпиадные задачи по математике для 3-7 класса - сложность 2-4 с решениями

На доске написаны два натуральных числа, одно из которых получается из другого перестановкой цифр. Может ли их разность равняться $2025$? (Запись натурального числа не может начинаться с нуля.)

На каждую клетку доски $8 \times 8$ поставили по сторожу. Каждый сторож может смотреть в одном из четырёх направлений (вдоль линий доски) и сторожить всех сторожей на линии своего взгляда. Для какого наибольшего $k$ можно так направить взгляды сторожей, чтобы каждого сторожа сторожили не менее $k$ других сторожей?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка