Олимпиадные задачи по математике для 4-8 класса

Дан треугольник $ABC$ с углом $A$, равным $60^\circ$. Его вписанная окружность касается стороны $AB$ в точке $D$, а вневписанная окружность, касающаяся стороны $AC$, касается продолжения стороны $AB$ в точке $E$. Докажите, что перпендикуляр к стороне $AC$, проходящий через точку $D$, вторично пересекает вписанную окружность в точке, равноудаленной от точек $E$ и $C$. (Вневписанной называется окружность, касающаяся одной из сторон треугольника и продолжений двух других его сторон.)

В трапецию $ABCD$ ($AD\parallel BC$) вписана окружность $\omega$, которая касается сторон $AB$, $BC$, $CD$ и $AD$ в точках $P$, $Q$, $R$, $S$ соответственно. Прямая, проходящая через точку $P$ параллельно основаниям трапеции, пересекает прямую $QR$ в точке $X$. Докажите, что прямые $AB$, $QS$ и $DX$ пересекаются в одной точке.

В трапеции $ABCD$ основание $AD$ вдвое больше основания $BC$, а угол $C$ в полтора раза больше угла $A$. Диагональ $AC$ делит угол $C$ на два угла. Определите, какой из них больше?

На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$.

Пусть $L$ – середина меньшей дуги $AC$ описанной окружности остроугольного треугольника $ABC$. Из вершины $B$ на касательную к описанной окружности, проведённую в точке $L$, опустили перпендикуляр $BP$. Докажите, что точки $P$, $L$ и середины сторон $AB$ и $BC$ лежат на одной окружности.

Из точки $A$ к окружности $\Omega$ проведены касательные $AB$ и $AC$. На отрезке $BC$ отмечена середина $M$ и произвольная точка $P$. Прямая $AP$ пересекает окружность $\Omega$ в точках $D$ и $E$. Докажите, что общие внешние касательные к окружностям $MDP$ и $MPE$ пересекаются на средней линии треугольника $ABC$.

Хорды $AB$ и $CD$ окружности $\omega$ пересекаются в точке $E$, причем $AD = AE = EB$. На отрезке $CE$ отметили точку $F$, так что $ED = CF$. Биссектриса угла $AFC$ пересекает дугу $DAC$ в точке $P$. Докажите, что точки $A$, $E$, $F$ и $P$ лежат на одной окружности.

Средняя линия, параллельная стороне $AC$ треугольника $ABC$, пересекает его описанную окружность в точках $X$ и $Y$. Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $D$ – середина дуги $AC$, не содержащей точку $B$. На отрезке $DI$ отметили точку $L$ такую, что $DL=BI/2$. Докажите, что из точек $X$ и $Y$ отрезок $IL$ виден под равными углами.

Четырёхугольник $ABCD$ вписан в окружность с центром $O$. Пусть $P$ – точка пересечения его диагоналей, а точки $M$ и $N$ – середины сторон $AB$ и $CD$ соответственно. Окружность $OPM$ вторично пересекает отрезки $AP$ и $BP$ в точках $A_1$ и $B_1$ соответственно, а окружность $OPN$ вторично пересекает отрезки $CP$ и $DP$ в точках $C_1$ и $D_1$ соответственно. Докажите, что площади четырёхугольников $AA_1B_1B$ и $CC_1D_1D$ равны.

Точка $M$ – середина большей боковой стороны $CD$ прямоугольной трапеции $ABCD$. Описанные около треугольников $BCM$ и $AMD$ окружности $\omega_1$ и $\omega_2$ пересекаются в точке $E$. Пусть $ED$ пересекает $\omega_1$ в точке $F$, а $FB$ пересекает $AD$ в $G$. Докажите, что $GM$ – биссектриса угла $BGD$.

Четырёхугольник $ABCD$ вписан в окружность ω с центром в точке $O$. Описанная окружность Ω треугольника $AOC$ пересекает вторично прямые $AB, BC, CD$ и $DA$ в точках $M, N, K$ и $L$ соответственно. Докажите, что прямые $MN, KL$ и касательные, проведённые к ω в точках $A$ и $C$, касаются одной окружности.

Через точку внутри треугольника провели три чевианы. Оказалось, что длины шести отрезков, на которые они разбивают стороны треугольника, образуют в каком-то порядке геометрическую прогрессию. Докажите, что длины чевиан тоже образуют геометрическую прогрессию.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка