Олимпиадные задачи по математике для 1-9 класса - сложность 3 с решениями
Будем называть натуральное число $N$<i>сильно кубическим</i>, если существует такой приведённый кубический многочлен $f(x)$ с целыми коэффициентами, что $f(f(f(N))) = 0$, а $f(N)$ и $f(f(N))$ не равны 0. Верно ли, что все числа, большие $20^{24}$, сильно кубические?