Олимпиадные задачи по математике для 1-10 класса - сложность 3-5 с решениями
Дан отрезок $AB$. Пусть $C$ – произвольная точка на серединном перпендикуляре к $AB$; $O$ – точка на описанной окружности треугольника $ABC$, противоположная $C$; эллипс с центром $O$ касается прямых $AB$, $BC$, $CA$. Найдите геометрическое место точек касания эллипса с прямой $BC$.
Пусть $ABC$ – треугольник Понселе, точка $A_1$ симметрична $A$ относительно центра вписанной окружности $I$, точка $A_2$ изогонально сопряжена $A_1$ относительно $ABC$. Найдите ГМТ $A_2$.