Назад
Задача

Несколько прямых делят плоскость на части. Докажите, что эти части можно раскрасить в 2 цвета так, что граничащие части будут иметь разный цвет.

Решение

Будем использовать индукцию по количеству прямых n. При  n = 1  утверждение задачи очевидно: достаточно покрасить две полуплоскости, на которые одна прямая делит плоскость, в разные цвета. Пусть утверждение задачи верно для k прямых. Рассмотрим некоторые  k + 1  прямых. "Забывая" пока про (k+1)-ю прямую, раскрасим области, на которые делят плоскость остальные k прямых, в два цвета так, что граничащие части будут иметь разный цвет (это можно сделать по предположению индукции). При такой раскраске области, граничащие по (k+1)-й прямой, будут иметь одинаковый цвет. Далее перекрасим все области, расположенные по одну из сторон относительно (k+1)-й прямой, в противоположный цвет. Полученная в результате раскраска удовлетворяет условию задачи.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет