Задача
В окружность вписан выпуклый шестиугольник ABCDEF.
а) Известно, что диагонали AD, BE, CF пересекаются в одной точке. Докажите, что AB·CD·EF = BC·DE·FA.
б) Известно, что AB·CD·EF = BC·DE·FA. Докажите, что диагонали AD, BE, CF пересекаются в одной точке.
Решение
а) Пусть O – точка пересечения диагоналей шестиугольника. Треугольники ABO и EDO подобны, так как пары углов BAO, DEO и ABO, EDO являются вписанными в окружность, опирающимися на одну дугу. Из подобия этих треугольников следует, что AB : DE = AO : EO. Аналогично EF : BC = EO : CO и CD : FA = CO : AO. Перемножая три полученных равенства, имеем:

Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет