Задача
Дана бесконечная клетчатая бумага и фигура, площадь которой меньше площади клетки. Докажите, что эту фигуру можно положить на бумагу, не накрыв ни одной вершины клетки.
Решение
Приклеим фигуру к клетчатой бумаге произвольным образом, разрежем бумагу по клеткам и сложим их в стопку, перенося их параллельно и не переворачивая. Спроецируем эту стопку на клетку. Проекции частей фигуры не могут покрыть всю клетку, так как их площадь меньше. Вспомним теперь, как была расположена фигура на клетчатой бумаге, и сдвинем клетчатую бумагу параллельно, чтобы ее вершины попали в точки, проецирующиеся в какую-либо непокрытую точку. В результате получим искомое расположение фигуры.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет