Задача
Есть тридцать карточек, на каждой написано по числу: на десяти карточках – a, на десяти других – b, и на десяти оставшихся – c (числа a, b, c все разные). Известно, что к любым пяти карточкам можно подобрать еще пять так, что сумма чисел на этих десяти карточках будет равна нулю. Докажите, что одно из чисел a, b, c равно нулю.
Решение
Пусть a < b < c. Отметим на числовой оси всевозможные суммы чисел на пяти карточках. Для каждой из них отмечена и противоположная, поэтому отмеченные точки расположены симметрично относительно нуля. В частности, противоположны наибольшая (5с) и наименьшая (5а) суммы, значит,
5a + 5c = 0, то есть c = – a. Противоположны и суммы, ближайшие к “крайним”: (4a + b) + (4c + b) = 0. Отсюда следует, что b = 0.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь