Назад
Задача

Из спичек сложен клетчатый квадрат 9×9, сторона каждой клетки – одна спичка. Петя и Вася по очереди убирают по спичке, начинает Петя. Выиграет тот, после чьего хода не останется целых квадратиков 1×1. Кто может действовать так, чтобы обеспечить себе победу, как бы ни играл его соперник?

Решение

  Заметим, что перед Васиным ходом всегда будет оставаться нечётное число спичек. Понятно, что выиграет тот, кому достанется позиция, когда квадратиков один или два смежных (по стороне). Поэтому Васе достаточно не оставлять после себя такой позиции, и тогда он выиграет, поскольку ничья невозможна. Покажем, как он может делать это в разных случаях.

  1) Осталось больше трёх квадратиков. Он возьмёт крайнюю спичку, испортив не более одного квадратика.

  2) Осталось три квадратика. Он возьмёт спичку не из них, а если таких спичек нет, то из-за нечётности числа спичек ясно, что два квадратика смежны, а третий не смежен с ними; тогда он испортит один из смежных квадратиков.

  3) Осталось два квадратика, и они не смежны. Из-за нечётности есть спичка, в них не входящая, которую и возьмёт Вася.

  Все позиции рассмотрены.

Ответ

Вася.

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет