Задача
На шахматной доске выбраны две клетки одинакового цвета.
Доказать, что ладья, начиная с первой, может обойти все клетки по разу, а на второй выбранной клетке побывать два раза.
Решение
Ясно, что если искомый путь ладьи существует при каком-то выборе отмеченных клеток, то он существует и при любом другом выборе, который получается из исходного перестановкой вертикалей или перестановкой горизонталей шахматной доски. Поэтому утверждение задачи достаточно доказать всего в двух случаях: если первая отмеченная клетка угловая, а вторая 1) соседняя с ней по стороне, 2) соседняя с ней по диагонали. Условие, что две клетки имеют одинаковый цвет – лишнее и никак не используется. В каждом из случаев 1) и 2) легко строится искомый путь ладьи.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь