Олимпиадная задача по принципу Дирихле и анализу для 8-9 классов от Курляндчика Л. Д.
Задача
На отрезке [0, 1] числовой оси расположены четыре точки: a, b, c, d.
Докажите, что найдётcя такая точка x, принадлежащая [0, 1], что
Решение
Точки a, b, c, d делят отрезок [0, 1] не более чем на пять частей; хотя бы одна из этих частей является интервалом длины не меньше 0,2. Пусть x – центр этого интервала. Расстояние от x до концов этого интервала не меньше 0,1, а до других точек из числа a, b, c, d – больше 0,1. Поэтому два из чисел |x – a|, |x – b|, |x – c|, |x – d| не меньше 0,1, а остальные два больше 0,1. Так что все обратные величины не больше 10, а две из них меньше 10. Следовательно, сумма этих обратных величин меньше 40.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет