Назад

Олимпиадная задача по планиметрии и комбинаторной геометрии для 7-9 классов

Задача

На плоскости отмечено 6 красных, 6 синих и 6 зеленых точек, причем никакие три из отмеченных точек не лежат на одной прямой. Докажите, что сумма площадей треугольников с вершинами одного цвета составляет не более четверти суммы площадей всех треугольников с отмеченными вершинами.

Решение

Рассмотрим три синих точки A , B , C и не синюю D . Тогда SABC SABD+SACD+SBCD . Просуммируем это неравенство по всем таким четверкам. При этом каждый синий треугольник считается 12 раз, а каждый сине-сине-несиний – 4 раза. Таким образом, сумма площадей синих треугольников хотя бы в 3 раза меньше суммы площадей сине-сине-несиних. Итого: сумма площадей синих треугольников составляет не более четверти сумм площадей треугольников, хотя бы две вершины которых – синие. Аналогичное неравенство получим для двух других цветов. Так как рассмотренные группы не пересекаются, то и сумма площадей одноцветных треугольников составляет не более четверти суммы площадей всех треугольников.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет