Назад

Олимпиадная задача Изместьева: периметры многоугольников на шахматной доске

Задача

Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть A – количество черных отрезков на периметре, B – количество белых, и пусть многоугольник состоит из a черных и b белых клеток. Докажите, что A-B=4(a-b).

Решение

Посчитаем стороны всех клеток, составляющих многоугольник, следующим образом: из количества сторон черных клеток вычтем количество сторон белых клеток. Эта величина равна4(a-b), так как у каждой клетки четыре стороны, в то же время каждый отрезок, лежащий внутри многоугольника, был посчитан один раз со знаком + и один раз – со знаком - . То есть полученная величина равна сумме отрезков периметра с соответствующими знаками: + для черных и - для белых, откуда и получаем требуемое равенство. Задачу можно решать по индукции, при доказательстве индуктивного перехода отбрасывая от многоугольника одну граничную клетку. При этом многоугольник может развалиться на несколько, и удобнее доказывать формулу не для одного многоугольника, а для совокупности. Число вариантов расположения отбрасываемой клетки может быть доведено до двух: , (с тремя сторонами, выходящими на периметр, и с двумя).

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет