Олимпиадная задача по планиметрии: точка внутри треугольника и пересечение медиан
Задача
Точка M расположена внутри треугольника ABC. Известно, что треугольники AMB, AMC и BMC равновелики.
Докажите, что M – точка пересечения медиан треугольника ABC.
Решение
Продолжим отрезок AM до пересечения со стороной BC в точке K. Пусть P и Q – проекции точек соответственно B и C на прямую AM. Тогда BP = CQ как высоты равновеликих треугольников AMB и AMC, опущенные на их общую сторону AM. Если точки P и Q совпадают, то они совпадают с точкой K. В этом случае K – середина BC, то есть AK – медиана треугольника ABC. Если же точки P и Q различны, то прямоугольные треугольники BKP и CKQ равны по катету и острому углу, значит, BK = CK, то есть и в этом случае AK – медиана треугольника ABC.
Аналогично точка M лежит на медианах треугольника ABC, проведённых из вершин B и C. Следовательно, M – точка пересечения медиан этого треугольника.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь