Олимпиадные задачи по теме «Алгебраические неравенства и системы неравенств» для 6 класса - сложность 2 с решениями
Алгебраические неравенства и системы неравенств
НазадКакое из чисел больше: 1 – 2 + 3 – 4 + 5 – ... + 99 – 100 или 1 + 2 – 3 + 4 – 5 + 6 – ... – 99 + 100?
У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных.
Из спичек составлены три неверных равенства (см. рисунок). <div align="center"><img src="/storage/problem-media/88248/problem_88248_img_2.gif"></div>Переставьте в каждом ряду по одной спичке так, чтобы все равенства стали верными. Можно смещать части формулы без изменения рисунка.
Дама сдавала в багаж рюкзак, чемодан, саквояж и корзину. Известно, что чемодан весит больше, чем рюкзак; саквояж и рюкзак весят больше, чем чемодан и корзина; корзина и саквояж весят столько же, сколько чемодан и рюкзак. Перечислите вещи дамы в порядке убывания их веса.
Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?
Замените каждую букву на схеме цифрой от 1 до 9 так, чтобы выполнялись все неравенства, а затем расставьте буквы в порядке возрастания их числовых значений. Какое слово у вас получилось? <div align="center"><img src="/storage/problem-media/87968/problem_87968_img_2.gif"></div>
Дано 25 чисел. Сумма любых четырех из них положительна. Докажите, что сумма их всех тоже положительна.
a) Решить в целых числах уравнение <sup>1</sup>/<sub><i>a</i></sub>+<sup>1</sup>/<sub><i>b</i></sub>+<sup>1</sup>/<sub><i>c</i></sub>= 1. б) <sup>1</sup>/<sub><i>a</i></sub>+<sup>1</sup>/<sub><i>b</i></sub>+<sup>1</sup>/<sub><i>c</i></sub>< 1 (<i>a, b, c</i>– натуральные числа). Доказать, что <sup>1</sup>/<sub><i>a</i></sub>+<sup>1</sup>/<sub><i>b</i></sub>+<sup>1</sup>/<sub><i>c</i></sub><<sup>41</sup>/<sub>42</sub>.
Докажите, что три неравенства <img align="MIDDLE" src="/storage/problem-media/30927/problem_30927_img_2.gif"> не могут быть все верны одновременно, если числа<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,<i>a</i><sub>3</sub>,<i>b</i><sub>1</sub>,<i>b</i><sub>2</sub>,<i>b</i><sub>3</sub>положительны.
<i>x, y</i> > 0. Через <i>S</i> обозначим наименьшее из чисел <i>x</i>, <sup>1</sup>/<sub><i>y</i></sub>, <i>y</i> + <sup>1</sup>/<sub><i>x</i></sub>. Какое максимальное значение может принимать величина <i>S</i>?
Докажите, что для любого <i>x</i> выполнено неравенство <i>x</i><sup>4</sup> – <i>x</i>³ + 3<i>x</i>² – 2<i>x</i> + 2 ≥ 0.
Докажите, что <img width="348" height="56" align="MIDDLE" border="0" src="/storage/problem-media/30922/problem_30922_img_2.gif">
<i>x, y, z</i> положительные числа. Докажите неравенство <img width="202" height="45" align="MIDDLE" border="0" src="/storage/problem-media/30921/problem_30921_img_2.gif">
<i>a, b, c</i> – натуральные числа и  <sup>1</sup>/<sub><i>a</i></sub> + 1/<sub><i>b</i></sub> + 1/<sub><i>c</i></sub> < 1. Докажите, что  <sup>1</sup>/<sub><i>a</i></sub> + 1/<sub><i>b</i></sub> + 1/<sub><i>c</i></sub> ≤ <sup>41</sup>/<sub>42</sub>.
<i>x, y</i> – числа из отрезка [0, 1]. Докажите неравенство <img width="140" height="45" align="MIDDLE" border="0" src="/storage/problem-media/30919/problem_30919_img_2.gif">
<i>a, b, c</i> > 0 и <i>abc</i> = 1. Известно, что <i>a + b + c</i> > <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> + <sup>1</sup>/<sub><i>c</i></sub>. Докажите, что ровно одно из чисел <i>a, b, c</i> больше 1.
Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01?
<i>a, b, c, d</i> ≥ 0, причём <i>c + d ≤ a, c + d ≤ b</i>. Докажите, что <i>ad + bc ≤ ab</i>.
1 > <i>x > y</i> > 0. Докажите, что <img align="MIDDLE" src="/storage/problem-media/30915/problem_30915_img_2.gif">
<i>n</i> – натуральное число. Докажите, что <img align="absMIDDLE" src="/storage/problem-media/30914/problem_30914_img_2.gif">
Докажите, что 100! < 50<sup>100</sup>.
Произведение положительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> равно 1. Докажите, что (1 + <i>a</i><sub>1</sub>)(1 + <i>a</i><sub>2</sub>)...(1 + <i>a<sub>n</sub></i>) ≥ 2<sup><i>n</i></sup>.
Какое из чисел <img align="absMIDDLE" src="/storage/problem-media/30905/problem_30905_img_2.gif"> (10 двоек) или <img align="absMIDDLE" src="/storage/problem-media/30905/problem_30905_img_3.gif"> (9 троек) больше? А если троек не 9, а 8?
Докажите, что для любого натурального <i>n</i> выполняется неравенство 3<i><sup>n</sup> > n</i>·2<i><sup>n</sup></i>.
<i>x, y</i> ≥ 0. Докажите, что <img width="203" height="34" align="MIDDLE" border="0" src="/storage/problem-media/30894/problem_30894_img_2.gif">.