Олимпиадные задачи по теме «Последовательности» для 2-5 класса - сложность 2-4 с решениями

Можно ли в записи  2013² – 2012² – ... – 2² – 1²  некоторые минусы заменить на плюсы так, чтобы значение получившегося выражения стало равно 2013?

На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19  (6·1 + 13 = 19).  Какое число можно будет прочитать на доске через час?

Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?

Последовательности положительных чисел (<i>x<sub>n</sub></i>) и (<i>y<sub>n</sub></i>) удовлетворяют условиям   <img align="absmiddle" src="/storage/problem-media/109842/problem_109842_img_2.gif">   при всех натуральных <i>n</i>. Докажите, что если все числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>y</i><sub>1</sub>, <i>y</i><sub>2</sub> больше 1, то  <i>x<sub>n</sub> > y<sub>n</sub></i>  при каком-нибудь натуральном <i>n</i>.

Продолжите последовательность чисел: 1, 11, 21, 1112, 3112, 211213, 312213, 212223, 114213...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка