Олимпиадные задачи по теме «Планиметрия» для 11 класса - сложность 4 с решениями
Планиметрия
НазадТочка <i>E</i> – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника <i>ABC</i> с его вершиной <i>A</i>. Вписанная окружность этого треугольника касается сторон <i>AB</i> и <i>AC</i> в точках <i>C'</i> и <i>B'</i> соответственно. Докажите, что точка <i>F</i>, симметричная точке <i>E</i> относительно прямой <i>B'C'</i>, лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника <i>ABC</i>.
Касательные, проведённые к описанной окружности остроугольного треугольника <i>ABC</i> в точках <i>A</i> и <i>C</i>, пересекаются в точке <i>Z. AA</i><sub>1</sub>, <i>CC</i><sub>1</sub> – высоты. Прямая <i>A</i><sub>1</sub><i>C</i><sub>1</sub> пересекает прямые <i>ZA, ZC</i> в точках <i>X</i> и <i>Y</i> соответственно. Докажите, что описанные окружности треугольников <i>ABC</i> и <i>XYZ</i> касаются.
Дан неравнобедренный треугольник <i>ABC</i>. Пусть <i>N</i> – середина дуги <i>BAC</i> его описанной окружности, а <i>M</i> – середина стороны <i>BC</i>. Обозначим через <i>I</i><sub>1</sub> и <i>I</i><sub>2</sub> центры вписанных окружностей треугольников <i>ABM</i> и <i>ACM</i> соответственно. Докажите, что точки <i>I</i><sub>1</sub>, <i>I</i><sub>2</sub>, <i>A</i>, <i>N</i> лежат на одной окружности.
100 красных точек разделили синюю окружность на 100 дуг, длины которых являются всеми натуральными числами от 1 до 100 в произвольном порядке. Докажите, что существуют две перпендикулярные хорды с красными концами.
Боковые стороны <i>AB</i> и <i>CD</i> трапеции <i>ABCD</i> являются соответственно хордами окружностей ω<sub>1</sub> и ω<sub>2</sub>, касающихся друг друга внешним образом. Градусные меры касающихся дуг <i>AB</i> и <i>CD</i> равны α и β. Окружности ω<sub>3</sub> и ω<sub>4</sub> также имеют хорды <i>AB</i> и <i>CD</i> соответственно. Их дуги <i>AB</i> и <i>CD</i>, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω<sub>3</sub> и ω<sub>4</sub> тоже касаются.
Пусть <i>I</i> – центр вписанной окружности неравнобедренного треугольника <i>ABC</i>. Через <i>A</i><sub>1</sub> обозначим середину дуги <i>BC</i> описанной окружности треугольника <i>ABC</i>, не содержащей точки <i>A</i>, а через <i>A</i><sub>2</sub> – середину дуги <i>BAC</i>. Перпендикуляр, опущенный из точки <i>A</i><sub>1</sub> на прямую <i>A</i><sub>2</sub><i>I</i>, пересекает прямую <i>BC</i> в точке <i>A'</i>. Аналогично определяются точки <i>B'</i> и <i>C'</i>.
а) Докажите, что точки <i>A'</i>, <i>B'</i>...
Oснованием пирамиды служит выпуклый четырехугольник. Oбязательно ли существует сечение этой пирамиды, не пересекающее основание и являющееся вписанным четырехугольником?
Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же окружности?
Пусть <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> – высоты неравнобедренного остроугольного треугольника <i>ABC</i>; описанные окружности треугольников <i>ABC</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i>, вторично пересекаются в точке <i>P</i>, <i>Z</i> – точка пересечения касательных к описанной окружности треугольника <i>ABC</i>, проведённых в точках <i>A</i> и <i>B</i>. Докажите, что прямые <i>AP</i>, <i>BC</i> и <i>ZC</i><sub>1</sub> пересекаются в одной точке.
Дан треугольник <i>ABC</i> и точки <i>P</i> и <i>Q</i>. Известно, что треугольники, образованные проекциями <i>P</i> и <i>Q</i> на стороны <i>ABC</i>, подобны (соответствуют друг другу вершины, лежащие на одних и тех же сторонах исходного треугольника). Докажите, что прямая <i>PQ</i> проходит через центр описанной окружности треугольника <i>ABC</i>.
К двум окружностям <i>w</i><sub>1</sub> и <i>w</i><sub>2</sub>, пересекающимся в точках <i>A</i> и <i>B</i>, проведена их общая касательная <i>CD</i> (<i>C</i> и <i>D</i> – точки касания соответственно, точка <i>B</i> ближе к прямой <i>CD</i>, чем <i>A</i>). Прямая, проходящая через <i>A</i>, вторично пересекает <i>w</i><sub>1</sub> и <i>w</i><sub>2</sub> в точках и <i>L</i> соответственно (<i>A</i> лежит между <i>K</i> и <i>L</i> ). Прямые <i>KC</i> и <i>LD</i> пересекаются в точке <i>P</i>. Докажите, ч...
B треугольнике <i>ABC</i> точка <i>O</i> – центр описанной окружности. Прямая <i>a</i> проходит через середину высоты треугольника, опущенной из вершины <i>A</i>, и параллельна <i>OA</i>. Aналогично определяются прямые <i>b</i> и <i>c</i>. Докажите, что эти три прямые пересекаются в одной точке.
Дан правильный 17-угольник <i>A</i><sub>1</sub>... <i>A</i><sub>17</sub>. Докажите, что треугольники, образованные прямыми <i>A</i><sub>1</sub><i>A</i><sub>4</sub>, <i>A</i><sub>2</sub><i>A</i><sub>10</sub>, <i>A</i><sub>13</sub><i>A</i><sub>14</sub> и <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>A</i><sub>4</sub><i>A</i><sub>6</sub>, <i>A</i><sub>14</sub><i>A</i><sub>15</sub>, равны.
Постройте четырёхугольник, в который можно вписать и около которого можно описать окружность, по радиусам этих окружностей и углу между диагоналями.
Дан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.
Дан треугольник <i>ABC</i> и точки <i>X, Y</i>, не лежащие на его описанной окружности Ω. Пусть <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – проекции <i>X</i> на <i>BC, CA, AB</i>, а <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub>, <i>C</i><sub>2</sub> – проекции <i>Y</i>. Докажите, что перпендикуляры, опущенные из <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> на, соответственно, <i>B</i><sub>2</sub><i>C</i><sub>2</sub>, <i>C</...
Через вершины треугольника <i>ABC</i> проводятся три произвольные параллельные прямые <i>d<sub>a</sub>, d<sub>b</sub>, d<sub>c</sub></i>. Прямые, симметричные <i>d<sub>a</sub>, d<sub>b</sub>, d<sub>c</sub></i> относительно <i>BC, CA, AB</i> соответственно, образуют треугольник <i>XYZ</i>. Найдите геометрическое место центров вписанных окружностей таких треугольников.
На плоскости отметили 4<i>n</i> точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых <i>n</i> + 1 точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7<i>n</i> отрезков.
<center><i> <img align="absmiddle" src="/storage/problem-media/115448/problem_115448_img_2.gif"> </i></center>
Четырёхугольник<i> ABCD </i>вписан в окружность с диаметром<i> AD </i>;<i> O </i> — точка пересечения его диагоналей<i> AC </i>и<i> BD </i>является центром другой окружности, касающейся стороны<i> BC </i>. Из вершин<i> B </i>и<i> С </i>проведены касательные ко второй окружности, пересекающиеся в точке<i> T </i>. Докажите, что точка<i> T </i>лежит на отрезке<i> AD </i>.
На сторонах<i> AB </i>и<i> BC </i>параллелограмма<i> ABCD </i>выбраны точки<i> A<sub>1</sub> </i>и<i> C<sub>1</sub> </i>соответственно. Отрезки<i> AC<sub>1</sub> </i>и<i> CA<sub>1</sub> </i>пересекаются в точке<i> P </i>. Описанные окружности треугольников <i> AA<sub>1</sub>P </i>и<i> CC<sub>1</sub>P </i>вторично пересекаются в точке<i> Q </i>, лежащей внутри треугольника <i> ACD </i>. Докажите, что<i> <img align="absmiddle" src="/storage/problem-media/115402/problem_115402_img_2.gif"> PDA=<img align="absmiddle" src="/storage/...
В треугольной пирамиде <i> ABCD </i>все плоские углы при вершинах — не прямые, а точки пересечения высот в треугольниках <i> ABC </i>,<i> ABD </i>,<i> ACD </i>лежат на одной прямой. Докажите, что центр описанной сферы пирамиды лежит в плоскости, проходящей через середины ребер <i> AB </i>,<i> AC </i>,<i> AD </i>.
На плоскости даны оси координат с одинаковым, но не обозначенным масштабом и график функции <center><i>
y= sin x, x<img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_2.gif"></i>(0<i>;α</i>)<i>.
</i></center> Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: а)<i> α<img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_2.gif"></i>(<i><img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_3.gif">;π</i>); б)<i> α<img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_2.gif">&...
Дано целое число <i>n</i> > 1. Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по <i>n</i> точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?
Вписанная окружность<i> σ </i>треугольника<i> ABC </i>касается его сторон<i> BC </i>,<i> AC </i>,<i> AB </i>в точках<i> A' </i>,<i> B' </i>,<i> C' </i>соответственно. Точки<i> K </i>и<i> L </i>на окружности<i> σ </i>таковы, что<i> <img src="/storage/problem-media/111797/problem_111797_img_2.gif"> AKB'+<img src="/storage/problem-media/111797/problem_111797_img_2.gif"> BKA'=<img src="/storage/problem-media/111797/problem_111797_img_2.gif"> ALB'+<img src="/storage/problem-media/111797/problem_111797_img_2.gif"> BLA'=</i>180<i><sup>o</sup&g...
В треугольнике<i> ABC </i>на стороне<i> BC </i>выбрана точка<i> M </i>так, что точка пересечения медиан треугольника<i> ABM </i>лежит на описанной окружности треугольника<i> ACM </i>, а точка пересечения медиан треугольника<i> ACM </i>лежит на описанной окружности треугольника<i> ABM </i>. Докажите, что медианы треугольников<i> ABM </i>и<i> ACM </i>из вершины<i> M </i>равны.