Олимпиадные задачи по теме «Функции одной переменной. Непрерывность» для 6-8 класса - сложность 3 с решениями
Функции одной переменной. Непрерывность
НазадДан квадратный трёхчлен <i>f</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>. Известно, что для любого вещественного <i>x</i> существует такое вещественное <i>y</i>, что <i>f</i>(<i>y</i>) = <i>f</i>(<i>x</i>) + <i>y</i>. Найдите наибольшее возможное значение <i>a</i>.
<i>x</i><sub>1</sub> – вещественный корень уравнения <i>x</i>² + <i>ax + b</i> = 0, <i>x</i><sub>2</sub> – вещественный корень уравнения <i>x</i>² – <i>ax – b</i> = 0.
Доказать, что уравнение <i>x</i>² + 2<i>ax</i> + 2<i>b</i> = 0 имеет вещественный корень, заключённый между <i>x</i><sub>1</sub> и <i>x</i><sub>2</sub>. (<i>a</i> и <i>b</i> – вещественные числа).
Задано правило, которое каждой паре чисел <i>x</i>, <i>y</i> ставит в соответствие некоторое число <i>x*y</i>, причём для любых <i>x, y, z</i> выполняются тождества:
1) <i>x</i>*<i>x</i> = 0,
2) <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i>*<i>y</i>) + <i>z</i>.
Найдите 1993*1932.
Предположим, что в каждом номере нашего журнала в задачнике «Кванта» будет пять задач по математике. Обозначим через<nobr><i>f</i>(<i>x</i>, <i>y</i>)</nobr>номер первой из задач<nobr><i>x</i>-го</nobr>номера за<nobr><i>y</i>-й</nobr>год. Напишите общую формулу для<nobr><i>f</i>(<i>x</i>, <i>y</i>),</nobr>где<nobr>1 <font face="Symbol">£</font> <i>x</i> <font face="Symbol">£</font> 12</nobr>и<nobr>1970 <font face="Symbol">£</font> <i>x</i> <font face="Symbol">£</font> 1989.</nobr>Решите уравнение<nobr><i&g...
Докажите, что 13-е число месяца с большей вероятностью приходится на пятницу, чем на другие дни недели. Предполагается, что мы живем по Григорианскому стилю.
Пусть α – корень уравнения <i>x</i>² + <i>px</i> + <i>q</i> = 0, а β – уравнения <i>x</i>² – <i>px</i> – <i>q</i> = 0. Докажите, что между α и β лежит корень уравнения <i>x</i>² – 2<i>px</i> – 2<i>q</i> = 0.