Олимпиадные задачи по теме «Принцип крайнего» - сложность 1 с решениями
Принцип крайнего
НазадЗайчиха купила для своих семерых зайчат семь барабанов разных размеров и семь пар палочек разной длины. Если зайчонок видит, что у него и барабан больше, и палочки длиннее, чем у кого-то из братьев, он начинает громко барабанить. Какое наибольшее число зайчат сможет начать барабанить?
Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?
Из всякого ли выпуклого четырехугольника можно вырезать параллелограмм, три вершины которого совпадают с тремя вершинами этого четырехугольника?
Фигура на рисунке составлена из квадратов. Найдите сторону левого нижнего, если сторона самого маленького равна 1.<img src="/storage/problem-media/103796/problem_103796_img_2.gif">
Прямоугольник составлен из шести квадратов (см. правый рисунок). Найдите сторону самого большого квадрата, если сторона самого маленького равна 1.<img src="/storage/problem-media/103790/problem_103790_img_2.gif">
Можно ли разложить 44 шарика на 9 кучек так, чтобы количество шариков в разных кучках было различным?
Докажите, что не существует на плоскости четырех точек<i>A</i>,<i>B</i>,<i>C</i>и<i>D</i>таких, что все треугольники<i>ABC</i>,<i>BCD</i>,<i>CDA</i>,<i>DAB</i>остроугольные.
Докажите, что уравнение <sup><i>x</i></sup>/<sub><i>y</i></sub> + <sup><i>y</i></sup>/<sub><i>z</i></sub> + <sup><i>z</i></sup>/<sub><i>x</i></sub> = 1 неразрешимо в натуральных числах.
Сколькими способами можно переставить числа от 1 до 100 так, чтобы соседние числа отличались не более, чем на 1?
8 теннисистов провели круговой турнир. Докажите, что найдутся 4 теннисиста A,B,C,D, такие что A выиграл у B,C,D, B выиграл у C и D, C выиграл у D.