Олимпиадные задачи из источника «параграф 1. Четность» для 6-10 класса - сложность 3-4 с решениями
параграф 1. Четность
НазадВ клетках квадратной таблицы 4×4 расставлены знаки + и – , как показано на рисунке. <div align="center"><img src="/storage/problem-media/60645/problem_60645_img_2.gif"></div>Разрешается одновременно менять знак во всех клетках, расположенных в одной строке, в одном столбце или на прямой, параллельной какой-нибудь диагонали (в частности, можно менять знак в любой угловой клетке). Докажите, что, сколько бы мы ни производили таких перемен знака, нам не удастся получить таблицу из одних плюсов.
Дан выпуклый 2<i>n</i>-угольник <i>A</i><sub>1</sub>...<i>A</i><sub>2<i>n</i></sub>. Внутри него взята точка <i>P</i>, не лежащая ни на одной из диагоналей.
Докажите, что точка <i>P</i> принадлежит чётному числу треугольников с вершинами в точках <i>A</i><sub>1</sub>,..., <i>A</i><sub>2<i>n</i></sub>.
К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке.
Докажите, что хотя бы одна цифра полученной суммы чётна.