Олимпиадные задачи по теме «Системы счисления»
Системы счисления
НазадНа рисунке приведены три примера показаний исправных электронных часов. Сколько палочек могут перестать работать, чтобы время всегда можно было определить однозначно? <div align="center"><img src="/storage/problem-media/117005/problem_117005_img_2.gif"></div>
Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.
Астролог считает, что 2013 год <i>счастливый</i>, потому что 2013 нацело делится на сумму 20 + 13.
Будет ли когда-нибудь два счастливых года подряд?
Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?
Вот ребус довольно простой:
ЭХ вчетверо больше, чем ОЙ.
АЙ вчетверо больше, чем ОХ.
Найди сумму всех четырёх.
Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?
Даны натуральные числа <i>M</i> и <i>N</i>, большие десяти, состоящие из одинакового количества цифр и такие, что <i>M</i> = 3<i>N</i>. Чтобы получить число <i>M</i>, надо в числе <i>N</i> к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число <i>N</i>?
В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?
На карточках записаны числа 415, 43, 7, 8, 74, 3 (см. рисунок). Расположите карточки в ряд так, чтобы получившееся десятизначное число было наименьшим из возможных. <div align="center"><img src="/storage/problem-media/116858/problem_116858_img_2.gif"></div>
Петя и Вася играют в следующую игру. Петя загадывает натуральное число <i>x</i> с суммой цифр 2012. За один ход Вася выбирает любое натуральное число <i>a</i> и узнаёт у Пети сумму цифр числа |<i>x – a</i>|. Какое минимальное число ходов необходимо сделать Васе, чтобы гарантированно определить <i>x</i>?
В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом.
На какую наибольшую степень двойки может делиться такое число?
Может ли произведение трёх трёхзначных чисел, для записи которых использовано девять различных цифр, оканчиваться четырьмя нулями?
Коля утверждает, что можно выяснить, делится ли на 101 сумма всех четырёхзначных чисел, в записи которых нет ни цифры 0, ни цифры 9, не вычисляя самой суммы. Прав ли Коля?
В каком году установлен памятник Юрию Долгорукому, если в записи этого числа последняя цифра на единицу меньше предыдущей и при зачеркивании первой и последней цифры получается наибольшее двузначное число с суммой цифр 14?
Учитель написал на доске в алфавитном порядке все возможные 2<i><sup>n</sup></i> слов, состоящих из <i>n</i> букв А или Б. Затем он заменил каждое слово на произведение <i>n</i> множителей, исправив каждую букву А на <i>x</i>, а каждую букву Б – на (1 – <i>x</i>), и сложил между собой несколько первых из этих многочленов от <i>x</i>. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке [0, 1] функцию от <i>x</i>.
К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность?
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
а) 17 номеров;
б) менее 16 номеров?
Назовём натуральное семизначное число <i>удачным</i>, если оно делится на произведение всех своих цифр. Существуют ли четыре последовательных удачных числа?
Из четырёх цифр, отличных от нуля, составлены два четырёхзначных числа: самое большое и самое маленькое из возможных. Сумма получившихся чисел оказалась равна 11990. Какие числа могли быть составлены?
Паша записал на доске пример на сложение, после чего заменил некоторые цифры буквами, причём одинаковые цифры – одинаковыми буквами, а различные цифры – различными буквами. У него получилось: <b>КРОСС + 2011 = СТАРТ</b>. Докажите, что Паша ошибся.
Найдите значение выражения <img align="absmiddle" src="/storage/problem-media/116454/problem_116454_img_2.gif"> , если <i>а</i> = <img align="middle" src="/storage/problem-media/116454/problem_116454_img_3.gif">, <i>b</i> = <img align="middle" src="/storage/problem-media/116454/problem_116454_img_4.gif">.
Сумма цифр натурального числа <i>n</i> равна 100. Может ли сумма цифр числа <i>n</i>³ равняться 1000000?
Дано натуральное число. Разрешается расставить между цифрами числа плюсы произвольным образом и вычислить сумму (например, из числа 123456789 можно получить 12345 + 6 + 789 = 13140). С полученным числом снова разрешается выполнить подобную операцию, и так далее. Докажите, что из любого числа можно получить однозначное, выполнив не более 10 таких операций.
Назовём натуральное число <i>хорошим</i>, если все его цифры ненулевые. Хорошее число назовём <i>особым</i>, если в нём хотя бы <i>k</i> разрядов и цифры идут в порядке строгого возрастания (слева направо). Пусть имеется некое хорошее число. За ход разрешается приписать с любого края или вписать между любыми его двумя цифрами особое число или же, наоборот, стереть в его записи особое число. При каком наибольшем <i>k</i> можно из каждого хорошего числа получить любое другое хорошее число с помощью таких ходов?
Натуральные числа <i>a < b < c</i> таковы, что <i>b + a</i> делится на <i>b – a</i>, а <i>c + b</i> делится на <i>c – b</i>. Число <i>a</i> записывается 2011, а число <i>b</i> – 2012 цифрами. Сколько цифр в числе <i>c</i>?