Олимпиадные задачи по теме «Системы счисления» для 9 класса

Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?

Даны натуральные числа <i>M</i> и <i>N</i>, большие десяти, состоящие из одинакового количества цифр и такие, что  <i>M</i> = 3<i>N</i>.  Чтобы получить число <i>M</i>, надо в числе <i>N</i> к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число <i>N</i>?

Петя и Вася играют в следующую игру. Петя загадывает натуральное число <i>x</i> с суммой цифр 2012. За один ход Вася выбирает любое натуральное число <i>a</i> и узнаёт у Пети сумму цифр числа  |<i>x – a</i>|.  Какое минимальное число ходов необходимо сделать Васе, чтобы гарантированно определить <i>x</i>?

В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом.

На какую наибольшую степень двойки может делиться такое число?

Может ли произведение трёх трёхзначных чисел, для записи которых использовано девять различных цифр, оканчиваться четырьмя нулями?

Назовём натуральное семизначное число <i>удачным</i>, если оно делится на произведение всех своих цифр. Существуют ли четыре последовательных удачных числа?

Найдите значение выражения   <img align="absmiddle" src="/storage/problem-media/116454/problem_116454_img_2.gif"> ,   если  <i>а</i> = <img align="middle" src="/storage/problem-media/116454/problem_116454_img_3.gif">,   <i>b</i> = <img align="middle" src="/storage/problem-media/116454/problem_116454_img_4.gif">.

Сумма цифр натурального числа <i>n</i> равна 100. Может ли сумма цифр числа <i>n</i>³ равняться 1000000?

Натуральные числа  <i>a < b < c</i>  таковы, что  <i>b + a</i>  делится на  <i>b – a</i>,  а  <i>c + b</i>  делится на  <i>c – b</i>.  Число <i>a</i> записывается 2011, а число <i>b</i> – 2012 цифрами. Сколько цифр в числе <i>c</i>?

Барон Мюнхгаузен говорит, что у него есть многозначное число-палиндром (оно читается одинаково слева направо и справа налево). Написав его на бумажной ленте, барон сделал несколько разрезов между цифрами и получил на кусочках ленты числа 1, 2, ..., <i>N</i> в некотором порядке (каждое – ровно по разу). Не хвастает ли барон?

Шестизначное табло в автомобиле показывает, сколько километров автомобиль проехал с момента покупки. Сейчас на нем высвечивается число, в котором есть четыре "семёрки". Может ли оказаться так, что еще через900 км на табло высветится число, в котором ровно одна "семерка"?

Можно ли при каком-то натуральном<i> k </i>разбить все натуральные числа от 1 до<i> k </i>на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа?

Используя в качестве чисел любое количество монет достоинством 1, 2, 5 и 10 рублей, а также (бесплатные) скобки и знаки четырех арифметических действий, составьте выражение со значением 2009, потратив как можно меньше денег.

Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из <i>N</i> цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем <i>N</i> фокусник может договориться с помощником так, чтобы фокус гарантированно удался?

В натуральном числе <i>A</i> переставили цифры, получив число <i>B</i>. Известно, что   <img align="top" src="/storage/problem-media/111791/problem_111791_img_2.gif">   Найдите наименьшее возможное значение <i>n</i>.

Петя задумал натуральное число и для каждой пары его цифр выписал на доску их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя?

Андрей и Борис играют в следующую игру. Изначально на числовой прямой в точке<i> p </i>стоит робот. Сначала Андрей говорит расстояние, на которое должен сместиться робот. Потом Борис выбирает направление, в котором робот смещается на это расстояние, и т.д. При каких<i> p </i>Андрей может добиться того, что за конечное число ходов робот попадет в одну из точек 0 или 1 вне зависимости от действий Бориса?

Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?

Верно ли, что к любому числу, равному произведению двух последовательных натуральных чисел, можно приписать в конце какие-то две цифры так, что получится квадрат натурального числа?

Найдите какое-нибудь такое девятизначное число <i>N</i>, состоящее из различных цифр, что среди всех чисел, получающихся из <i>N</i> вычеркиванием семи цифр, было бы не более одного простого.

Известно, что сумма цифр натурального числа <i>N</i> равна 100, а сумма цифр числа 5<i>N</i> равна 50. Докажите, что <i>N</i> чётно.

Даны 19 карточек. Можно ли на каждой из карточек написать ненулевую цифру так, чтобы из этих карточек можно было сложить ровно одно 19-значное число, кратное на 11?

Каких точных квадратов, не превосходящих 10<sup>20</sup>, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8?

Набор пятизначных чисел ${N_1, \dots, N_k}$ таков, что любое пятизначное число, все цифры которого идут в возрастающем порядке, совпадает хотя бы в одном разряде хотя бы с одним из чисел $N_1, \dots, N_k$. Найдите наименьшее возможное значение $k$.

Набор пятизначных чисел<i> {N<sub>1</sub> </i>,<i> N<sub>k</sub>} </i>таков, что любое пятизначное число, все цифры которого идут в неубывающем порядке, совпадает хотя бы в одном разряде хотя бы с одним их чисел<i> N<sub>1</sub> </i>,<i> N<sub>k</sub> </i>. Найдите наименьшее возможное значение<i> k </i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка