Олимпиадные задачи по математике
Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.
Точку внутри треугольника назовём <i>хорошей</i>, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.
При каких <i>n</i> > 3 правильный <i>n</i>-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?
Дан треугольник <i>ABC</i>. Пусть <i>I</i> – центр его вписанной окружности, и пусть <i>X, Y, Z</i> – центры вписанных окружностей треугольников <i>AIB, BIC</i> и <i>AIC</i> соответственно. Оказалось, что центр вписанной окружности треугольника <i>XYZ</i> совпадает с <i>I</i>. Обязательно ли тогда треугольник <i>ABC</i> равносторонний?
Алёша написал на доске пять целых чисел – коэффициенты и корни квадратного трёхчлена. Боря стёр одно из них. Остались числа 2, 3, 4, –5. Восстановите стёртое число.
Петя отметил на плоскости несколько (больше двух) точек, все расстояния между которыми различны. Пару отмеченных точек (<i>A, B</i>) назовём <i>необычной</i>, если <i>A</i> – самая дальняя от <i>B</i> отмеченная точка, а <i>B</i> – ближайшая к <i>A</i> отмеченная точка (не считая самой точки <i>A</i>). Какое наибольшее возможное количество необычных пар могло получиться у Пети?
Натуральные числа <i>a < b < c</i> таковы, что <i>b + a</i> делится на <i>b – a</i>, а <i>c + b</i> делится на <i>c – b</i>. Число <i>a</i> записывается 2011, а число <i>b</i> – 2012 цифрами. Сколько цифр в числе <i>c</i>?
На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.
Оказалось, что ровно один из троих неправ. Про кого можно наверняка утверждать, что он прав?
Докажите, что для любого натурального числа <i>N</i> найдутся такие две пары натуральных чисел, что суммы в парах одинаковы, а произведения отличаются ровно в <i>N</i> раз.
По кругу написаны все целые числа от 1 по 2010 в таком порядке, что при движении по часовой стрелке числа поочередно то возрастают, то убывают.
Докажите, что разность каких-то двух чисел, стоящих рядом, чётна.
Доска 2010×2011 покрыта доминошками 2×1; некоторые из них лежат горизонтально, некоторые – вертикально.
Докажите, что граница горизонтальных доминошек с вертикальными имеет чётную длину.
Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10?
В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?
Hа плоскости даны две окружности <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub> с центрами <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> и радиусами 2<i>R</i> и <i>R</i> соответственно (<i>O</i><sub>1</sub><i>O</i><sub>2</sub> <i>></i> 3<i>R</i>). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на <i>C</i><sub>1</sub>, а две другие — на <i>C</i><sub>2</sub>.
В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?
Bыпуклый <i>n</i>-угольник <i>P</i>, где <i>n</i> > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения <i>n</i>, если <i>n</i>-угольник вписанный?
На кольцевом треке 2<i>n</i> велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее <i>n</i>² встреч.
Петя умеет на любом отрезке отмечать точки, которые делят этот отрезок пополам или в отношении <i>n</i> : (<i>n</i> + 1), где <i>n</i> – любое натуральное число. Петя утверждает, что этого достаточно, чтобы на любом отрезке отметить точку, которая делит его в любом заданном рациональном отношении. Прав ли он?
На окружности отметили <i>n</i> точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.
Найдите все значения <i>n</i>, при которых это возможно.
Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.
Через каждую вершину неравнобедренного треугольника <i>ABC</i> проведён отрезок, разбивающий его на два треугольника с равными периметрами.
Верно ли, что все эти отрезки имеют разные длины?
Дан выпуклый <i>n</i>-угольник <i>A</i><sub>1</sub>...<i>A<sub>n</sub></i>. Пусть <i>P<sub>i</sub></i> (<i>i</i> = 1, ..., <i>n</i>) – такая точка на его границе, что прямая <i>A<sub>i</sub>P<sub>i</sub></i> делит его площадь пополам. Известно, что все точки <i>P<sub>i</sub></i> не совпадают с вершинами и лежат на <i>k</i> сторонах <i>n</i>-угольника. Каково а) наименьшее; б) наибольшее возможное значение <i>k</i> при каждом данном <i>n</i>?
На плоскости даны три параллельные прямые.
Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.
Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.
Можно ли вписать октаэдр в додекаэдр так, чтобы каждая вершина октаэдра была вершиной додекаэдра?