Олимпиадные задачи из источника «параграф 5. Признаки делимости» для 11 класса - сложность 2 с решениями
параграф 5. Признаки делимости
НазадС помощью признака делимости Паскаля (см. задачу <a href="https://mirolimp.ru/tasks/160815">160815</a>) установите признаки делимости на числа 3, 9, 6, 8, 12, 15, 11, 7, 27, 37.
Пусть запись числа <i>N</i> в десятичной системе счисления имеет вид <span style="text-decoration: overline;"><i>a<sub>n</sub>a</i><sub><i>n</i>–1</sub>...<i>a</i><sub>1</sub><i>a</i><sub>0</sub></span> , <i>r<sub>i</sub></i> – остаток от деления числа 10<sup><i>i</i></sup> на <i>m</i> (<i>i</i> = 0, ..., <i>n</i>).
Докажите, что число <i>N</i> делится на <i>m</i> тогда и только тогда, когда число <i>M = a<sub>n</sub>r<sub>n</sub> + a</i><sub><i>n</i>–1</sub><i>r</i><sub>&...