Олимпиадные задачи из источника «параграф 6. Китайская теорема об остатках» для 8 класса
параграф 6. Китайская теорема об остатках
НазадВ китайской натурофилософии выделяются пять первоэлементов природы – дерево, огонь, металл, вода и земля, которым соответствуют пять цветов – синий (или зелёный), красный, белый, чёрный и жёлтый. В восточном календаре с древних времен используется 12-летний животный цикл так, что каждому из 12 годов в цикле соответствует одно из животных. Кроме того, каждый год проходит под покровительством одной из стихий и окрашивается в один из цветов:
годы, оканчивающиеся на 0 и 1 – годы металла (цвет белый);
годы, оканчивающиеся на 2 и 3 – это годы воды (цвет чёрный);
годы, оканчивающиеся на 4 и 5 – годы дерева (цвет синий);
годы, оканчивающиеся на 6 и 7 – годы огня (цвет красный);
годы, оканчивающиеся на 8 и 9 – годы земли (цвет жёлтый).
В 60-летнем календарном цикле каждое...
Найдите наименьшее натуральное число, половина которого – квадрат, треть – куб, а пятая часть – пятая степень.
Найдите такое наименьшее чётное натуральное число <i>a</i>, что <i>a</i> + 1 делится на 3, <i>a</i> + 2 – на 5, <i>a</i> + 3 – на 7, <i>a</i> + 4 – на 11, <i>a</i> + 5 – на 13.
Найдите остаток от деления числа 1000! на 10<sup>250</sup>.
На столе лежат книги, которые надо упаковать. Если их связать в одинаковые пачки по 4, по 5 или по 6 книг, то каждый раз останется одна лишняя книга, а если связать по 7 книг в пачку, то лишних книг не останется. Какое наименьшее количество книг может быть на столе?
Найдите наименьшее натуральное число, дающее при делении на 2, 3, 5, 7 остатки 1, 2, 4, 6 соответственно.