Олимпиадные задачи из источника «параграф 12. Неравенства для остроугольных треугольников»

Докажите, что треугольник <i>ABC</i>остроугольный тогда и только тогда, когда длины его проекций на три различных направления равны.

Докажите, что треугольник<i>ABC</i>остроугольный тогда и только тогда, когда на его сторонах <i>BC</i>,<i>CA</i>и <i>AB</i>можно выбрать такие внутренние точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>, что <i>AA</i><sub>1</sub>=<i>BB</i><sub>1</sub>=<i>CC</i><sub>1</sub>.

Докажите, что треугольник остроугольный тогда и только тогда, когда <i>p</i>> 2<i>R</i>+<i>r</i>.

Докажите, что треугольник со сторонами <i>a</i>,<i>b</i>и <i>c</i>остроугольный тогда и только тогда, когда <i>a</i><sup>2</sup>+<i>b</i><sup>2</sup>+<i>c</i><sup>2</sup>> 8<i>R</i><sup>2</sup>.

На сторонах <i>BC</i>,<i>CA</i>и <i>AB</i>остроугольного треугольника <i>ABC</i>взяты точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>. Докажите, что<div align="CENTER"> 2(<i>B</i><sub>1</sub><i>C</i><sub>1</sub>cos$\displaystyle \alpha$ + <i>C</i><sub>1</sub><i>A</i><sub>1</sub>cos$\displaystyle \beta$ + <i>A</i><sub>1</sub><i>B</i><sub>1</sub>cos$\displaystyle \gamma$) $\displaystyle \geq$ <i>a</i> cos$\displaystyle \alpha$ + <i>b</i> cos$\displaystyle \beta$ + <i&g...

Пусть <i>h</i> — наибольшая высота нетупоугольного треугольника. Докажите, что <i>r</i>+<i>R</i>$\leq$<i>h</i>.

Пусть$\angle$<i>A</i><$\angle$<i>B</i><$\angle$<i>C</i>< 90<sup><tt>o</tt></sup>. Докажите, что центр вписанной окружности треугольника<i>ABC</i>лежит внутри треугольника<i>BOH</i>, где<i>O</i> — центр описанной окружности,<i>H</i> — точка пересечения высот.

В остроугольном треугольнике <i>ABC</i>проведены высоты <i>AA</i><sub>1</sub>,<i>BB</i><sub>1</sub>и <i>CC</i><sub>1</sub>. Докажите, что периметр треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>не превосходит половины периметра треугольника <i>ABC</i>.

Докажите, что если в остроугольном треугольнике <i>h</i><sub>a</sub>=<i>l</i><sub>b</sub>=<i>m</i><sub>c</sub>, то этот треугольник равносторонний.

Докажите, что если треугольник не тупоугольный, то <i>m</i><sub>a</sub>+<i>m</i><sub>b</sub>+<i>m</i><sub>c</sub>$\geq$4<i>R</i>.

Докажите, что для остроугольного треугольника<div align="CENTER"> $\displaystyle {\frac{1}{l_a}}$ + $\displaystyle {\frac{1}{l_b}}$ + $\displaystyle {\frac{1}{l_c}}$ $\displaystyle \leq$ $\displaystyle \sqrt{2}$$\displaystyle \left(\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right.$$\displaystyle {\frac{1}{a}}$ + $\displaystyle {\frac{1}{b}}$ + $\displaystyle {\frac{1}{c}}$$\displaystyle \left.\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right)$. </div>

Докажите, что для остроугольного треугольника<div align="CENTER"> $\displaystyle {\frac{m_a}{h_a}}$ + $\displaystyle {\frac{m_b}{h_b}}$ + $\displaystyle {\frac{m_c}{h_c}}$ $\displaystyle \leq$ 1 + $\displaystyle {\frac{R}{r}}$. </div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка