Олимпиадные задачи из источника «глава 13. Векторы» для 2-8 класса - сложность 2 с решениями

а) Докажите, что<i>S</i>(<i>A</i>,<i>B</i>,<i>C</i>) = -<i>S</i>(<i>B</i>,<i>A</i>,<i>C</i>) =<i>S</i>(<i>B</i>,<i>C</i>,<i>A</i>). б) Докажите, что для любых точек <i>A</i>,<i>B</i>,<i>C</i>и <i>D</i>справедливо равенство<i>S</i>(<i>A</i>,<i>B</i>,<i>C</i>) =<i>S</i>(<i>D</i>,<i>A</i>,<i>B</i>) +<i>S</i>(<i>D</i>,<i>B</i>,<i>C</i>) +<i>S</i>(<i>D</i>,<i>C</i>,<i>A</i>).

Пусть<b>a</b>= (<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>) и <b>b</b>= (<i>b</i><sub>1</sub>,<i>b</i><sub>2</sub>). Докажите, что<b>a</b>$\vee$<b>b</b>=<i>a</i><sub>1</sub><i>b</i><sub>2</sub>-<i>a</i><sub>2</sub><i>b</i><sub>1</sub>.

Докажите, что: а)($\lambda$<b>a</b>)$\vee$<b>b</b>=$\lambda$(<b>a</b>$\vee$<b>b</b>); б)<b>a</b>$\vee$(<b>b</b>+<b>c</b>) =<b>a</b>$\vee$<b>b</b>+<b>a</b>$\vee$<b>c</b>.

Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.

Стороны треугольника <i>T</i>параллельны медианам треугольника <i>T</i><sub>1</sub>. Докажите, что медианы треугольника <i>T</i>параллельны сторонам треугольника <i>T</i><sub>1</sub>.

а) Докажите, что из медиан треугольника можно составить треугольник. б) Из медиан треугольника<i>ABC</i>составлен треугольник<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>, а из медиан треугольника<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>составлен треугольник<i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>. Докажите, что треугольники<i>ABC</i>и <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>подобны, причем коэффициент подобия...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка