Олимпиадные задачи из источника «глава 13. Векторы» для 8 класса - сложность 4 с решениями

Дан треугольник<i>ABC</i>и точка <i>P</i>. Точка <i>Q</i>такова, что<i>CQ</i>||<i>AP</i>, а точка <i>R</i>такова, что<i>AR</i>||<i>BQ</i>и <i>CR</i>||<i>BP</i>. Докажите, что<i>S</i><sub>ABC</sub>=<i>S</i><sub>PQR</sub>.

Точки <i>P</i><sub>1</sub>,<i>P</i><sub>2</sub>и <i>P</i><sub>3</sub>, не лежащие на одной прямой, расположены внутри выпуклого 2<i>n</i>-угольника<i>A</i><sub>1</sub>...<i>A</i><sub>2n</sub>. Докажите, что если сумма площадей треугольников<i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>P</i><sub>i</sub>,<i>A</i><sub>3</sub><i>A</i><sub>4</sub><i>P</i><sub>i</sub>,...,<i>A</i><sub>2n - 1</sub><i>A</i><sub>2n</sub><i>P</i><sub>i</sub>равна одному и тому...

Дано <i>n</i>попарно не сонаправленных векторов (<i>n</i>$\ge$3), сумма которых равна нулю. Докажите, что существует выпуклый<i>n</i>-угольник, набор векторов сторон которого совпадает с данным набором векторов.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка