Олимпиадные задачи из источника «параграф 6. Центр поворотной гомотетии» для 2-9 класса - сложность 1-2 с решениями

Постройте центр <i>O</i>поворотной гомотетии с данным коэффициентом<i>k</i>$\ne$1, переводящей прямую <i>l</i><sub>1</sub>в прямую <i>l</i><sub>2</sub>, а точку <i>A</i><sub>1</sub>лежащую на <i>l</i><sub>1</sub>, — в точку <i>A</i><sub>2</sub>.

а) Пусть <i>P</i> — точка пересечения прямых<i>AB</i>и <i>A</i><sub>1</sub><i>B</i><sub>1</sub>. Докажите, что если среди точек <i>A</i>,<i>B</i>,<i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и <i>P</i>нет совпадающих, то общая точка описанных окружностей треугольников<i>PAA</i><sub>1</sub>и <i>PBB</i><sub>1</sub>является центром поворотной гомотетии, переводящей точку <i>A</i>в <i>A</i><sub>1</sub>, а точку <i>B</i>в <i>B</i><sub>1</sub>, причем такая поворотная гомотетия единственна. б) Докажите, что центром поворотной го...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка