Олимпиадные задачи из источника «параграф 8. Покрытия» - сложность 4 с решениями
параграф 8. Покрытия
НазадДлина проекции фигуры$\Phi$на любую прямую не превосходит 1. Верно ли, что$\Phi$можно накрыть кругом диаметра: а) 1; б) 1,5?
Прожектор освещает угол величиной90<sup><tt>o</tt></sup>. Докажите, что в любых четырех заданных точках можно разместить 4 прожектора так, что они осветят всю плоскость.
Дан выпуклый пятиугольник, все углы которого тупые. Докажите, что в нем найдутся две такие диагонали, что круги, построенные на них как на диаметрах, полностью покроют весь пятиугольник.
Отрезок длиной 1 покрыт несколькими лежащими на нем отрезками. Докажите, что среди них можно выбрать несколько попарно непересекающихся отрезков, сумма длин которых не меньше 0,5.
На отрезке длиной 1 расположено несколько отрезков, полностью его покрывающих. Докажите, что можно выбросить некоторые из них так, чтобы оставшиеся по-прежнему покрывали отрезок и сумма их длин не превосходила 2.