Олимпиадные задачи из источника «параграф 8. Теорема Чевы» для 6-8 класса - сложность 3-5 с решениями
параграф 8. Теорема Чевы
НазадДан треугольник <i>ABC</i>. На прямых <i>AB</i>,<i>BC</i>и <i>CA</i>взяты точки <i>C</i><sub>1</sub>,<i>A</i><sub>1</sub>и <i>B</i><sub>1</sub>, причем <i>k</i>из них лежат на сторонах треугольника и 3 -<i>k</i> — на продолжениях сторон. Пусть<div align="CENTER"> <i>R</i> = $\displaystyle {\frac{BA_1}{CA_1}}$<sup> . </sup>$\displaystyle {\frac{CB_1}{AB_1}}$<sup> . </sup>$\displaystyle {\frac{AC_1}{BC_1}}$. </div> Докажите, что: а) точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>лежат на одной прямой...