Олимпиадные задачи из источника «параграф 6. Неравенства для площадей»

Квадрат разрезан на прямоугольники.

Доказать, что сумма площадей кругов, описанных около каждого прямоугольника, не меньше площади круга, описанного около квадрата.

Проекции многоугольника на ось<i>OX</i>, биссектрису 1-го и 3-го координатных углов, ось<i>OY</i>и биссектрису 2-го и 4-го координатных углов равны соответственно 4, 3$\sqrt{2}$, 5, 4$\sqrt{2}$. Площадь многоугольника —<i>S</i>. Докажите, что<i>S</i>$\le$17, 5.

а) Докажите, что в любом выпуклом шестиугольнике площади <i>S</i>найдется диагональ, отсекающая от него треугольник площади не больше <i>S</i>/6. б) Докажите, что в любом выпуклом восьмиугольнике площади <i>S</i>найдется диагональ, отсекающая от него треугольник площади не больше <i>S</i>/8.

Докажите, что сумма площадей пяти треугольников, образованных парами соседних сторон и соответствующими диагоналями выпуклого пятиугольника, больше площади всего пятиугольника.

Все стороны выпуклого многоугольника отодвигаются во внешнюю сторону на расстояние <i>h</i>. Докажите, что его площадь при этом увеличится больше чем на <i>Ph</i>+$\pi$<i>h</i><sup>2</sup>, где <i>P</i> — периметр.

а) Точки <i>B</i>,<i>C</i>и <i>D</i>делят (меньшую) дугу <i>AE</i>окружности на четыре равные части. Докажите, что <i>S</i><sub>ACE</sub>< 8<i>S</i><sub>BCD</sub>. б) Из точки <i>A</i>проведены касательные <i>AB</i>и <i>AC</i>к окружности. Через середину <i>D</i>(меньшей) дуги <i>BC</i>проведена касательная, пересекающая отрезки <i>AB</i>и <i>AC</i>в точках <i>M</i>и <i>N</i>. Докажите, что <i>S</i><sub>BCD</sub>< 2<i>S</i><sub>MAN</sub>.

Площади треугольников <i>ABC</i>и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>равны <i>S</i>и <i>S</i><sub>1</sub>, причем треугольник <i>ABC</i>не тупоугольный. Наибольшее из отношений <i>a</i><sub>1</sub>/<i>a</i>,<i>b</i><sub>1</sub>/<i>b</i>и <i>c</i><sub>1</sub>/<i>c</i>равно <i>k</i>. Докажите, что <i>S</i><sub>1</sub>$\leq$<i>k</i><sup>2</sup><i>S</i>.

Через точку, лежащую внутри треугольника, проведены три прямые, параллельные его сторонам. Обозначим площади частей, на которые эти прямые разбивают треугольник, так, как показано на рис. Докажите, что <i>a</i>/$\alpha$+<i>b</i>/$\beta$+<i>c</i>/$\gamma$$\geq$3/2.

<div align="center"><img src="/storage/problem-media/57344/problem_57344_img_6.gif" border="1"></div>

<i>ABCD</i> — выпуклый четырехугольник площади <i>S</i>. Угол между прямыми <i>AB</i>и <i>CD</i>равен <i>a</i>, угол между <i>AD</i>и <i>BC</i>равен $\beta$. Докажите, что<div align="CENTER"> <i>AB</i><sup> . </sup><i>CD</i> sin$\displaystyle \alpha$ + <i>AD</i><sup> . </sup><i>BC</i> sin$\displaystyle \beta$ $\displaystyle \leq$ 2<i>S</i> $\displaystyle \leq$ <i>AB</i><sup> . </sup><i>CD</i> + <i>AD</i><sup> . </sup><i>BC</i>. </div>

Площади треугольников<i>ABC</i>,<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>,<i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>равны <i>S</i>,<i>S</i><sub>1</sub>,<i>S</i><sub>2</sub>соответственно, причем <i>AB</i>=<i>A</i><sub>1</sub><i>B</i><sub>1</sub>+<i>A</i><sub>2</sub><i>B</i><sub>2</sub>,<i>AC</i>=<i>A</i><sub>1</sub><i>C</i><sub>1</sub>+<i>A</i><sub>2</sub&...

Точки <i>M</i>и <i>N</i>лежат на сторонах <i>AB</i>и <i>AC</i>треугольника <i>ABC</i>, причем <i>AM</i>=<i>CN</i>и <i>AN</i>=<i>BM</i>. Докажите, что площадь четырехугольника <i>BMNC</i>по крайней мере в три раза больше площади треугольника <i>AMN</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка