Олимпиадные задачи из источника «выпуск 4»
выпуск 4
НазадВ клетки таблицы <i>m×n</i> вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.
Собралось <i>n</i> человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.
Каждое неотрицательное целое число представимо, причём единственным образом, в виде <img align="absmiddle" src="/storage/problem-media/73613/problem_73613_img_2.gif"> где <i>x</i> и <i>y</i> – целые неотрицательные числа. Докажите это.
Точки <i>P</i> и <i>Q</i> движутся с одинаковой постоянной скоростью <i>v</i> по двум прямым, пересекающимся в точке <i>O</i>.
Докажите, что на плоскости существует неподвижная точка <i>A</i>, расстояния от которой до точек <i>P</i> и <i>Q</i> в любой момент времени равны.
Две стороны треугольника равны 10 и 15. Докажите, что биссектриса угла между ними не больше 12.