Олимпиадные задачи из источника «выпуск 10»

Пусть <i>k</i> и <i>n</i> – натуральные числа,  <i>k ≤ n</i>.  Расставьте первые <i>n</i>² натуральных чисел в таблицу <i>n</i>×<i>n</i> так, чтобы в каждой строке числа шли в порядке возрастания и при этом сумма чисел в <i>k</i>-м столбце была  а) наименьшей;  б) наибольшей.

В любой арифметической прогрессии  <i>a,  a + d,  a</i> + 2<i>d,  ...,  a + nd</i>,  ...,  составленной из натуральных чисел, есть бесконечно много членов, в разложении которых на простые множители входят в точности одни и те же простые числа. Докажите это.

а) Школьники одного класса в сентябре ходили в два туристических похода. В первом походе мальчиков было меньше &frac25; общего числа участников этого похода, во втором – тоже меньше &frac25;. Докажите, что в этом классе мальчики составляют меньше <sup>4</sup>/<sub>7</sub> общего числа учеников, если известно, что каждый из учеников участвовал по крайней мере в одном походе. б) Пусть в <i>k</i>-м походе, где  1 ≤ <i>k ≤ n</i>,  мальчики составляли α<sub><i>k</i></sub>-ю часть общего количества участников этого похода. Какую наибольшую долю могут составлять мальчики на общей встрече всех туристов (всех, кто участвовал хотя бы в одном из <i>n</i> походов)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка