Олимпиадные задачи по теме «Теория множеств»
Теория множеств
НазадВ классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.
Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.
Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub>, ... так, чтобы при любом натуральном <i>k</i> сумма всех чисел, входящих в подмножество <i>A<sub>k</sub></i>, равнялась <i>k</i> + 2013?
Двенадцать малышей вышли во двор играть в песочнице. Каждый, кто принёс ведёрко, принёс и совочек. Забыли дома ведёрко девять малышей, забыли дома совочек двое. На сколько меньше малышей, которые принесли ведёрко, чем тех, которые принесли совочек, но забыли ведёрко?
Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?
После обеда на <i>прозрачной</i> квадратной скатерти остались тёмные пятна общей площади <i>S</i>. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна <i>S</i><sub>1</sub>. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна <i>S</i>. Какое наименьшее значение может принимать величина <i>S</i><sub>1</sub> : <i>S</i>?
На собрание пришло <i>n</i> человек (<i>n</i> > 1). Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.
а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.
б) Покажите, что <i>n</i> может быть больше 4.
Рассмотрим граф, у которого вершины соответствуют всевозможным трёхэлементным подмножествам множества {1, 2, 3, ..., 2<i><sup>k</sup></i>}, а рёбра проводятся между вершинами, которые соответствуют подмножествам, пересекающимся ровно по одному элементу. Найдите минимальное количество цветов, в которые можно раскрасить вершины графа так, чтобы любые две вершины, соединённые ребром, были разного цвета.
В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.
В стаде, состоящем из лошадей, двугорбых и одногорбых верблюдов, в общей сложности 200 горбов.
Сколько животных в стаде, если количество лошадей равно количеству двугорбых верблюдов? .
Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел. Какое из оставшихся чисел стоит на сотом месте?
Можно ли раскрасить натуральные числа в 2009 цветов так, чтобы каждый цвет встречался бесконечное число раз, и не нашлось тройки чисел, покрашенных в три различных цвета, таких, что произведение двух из них равно третьему?
При каком наименьшем $n$ для любого набора $A$ из $2007$ множеств найдется такой набор $B$ из $n$ множеств, что каждое множество набора $A$ является пересечением двух различных множеств набора $B$?
В 10 коробках лежат карандаши (пустых коробок нет). Известно, что в разных коробках разное число карандашей, причём в каждой коробке все карандаши разных цветов. Докажите, что из каждой коробки можно выбрать по карандашу так, что все они будут разных цветов.
По данным опроса, проведенного в 7 "Е" классе, выяснилось, что 20% учеников, интересующихся математикой, интересуются еще и физикой, а 25% учеников, интересующихся физикой, интересуются также и математикой. И только Пете с Васей не интересен ни один из этих предметов. Сколько человек в 7 "Е", если известно, что их больше 20, но меньше 30?
Дано 101-элементное подмножество <i>A</i> множества <i>S</i> = {1, 2, ..., 1000000}.
Докажите, что для некоторых <i>t</i><sub>1</sub>, ..., <i>t</i><sub>100</sub> из <i>S</i> множества <i>A<sub>j</sub></i> = {<i>x + t<sub>j</sub></i> | <i>x</i> ∈ <i>A; j</i> = 1, ..., 100} попарно не пересекаются.
Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел<i> a </i>и<i> b </i>(<i> a>b </i>) хотя бы одно из чисел<i> a+b </i>или<i> a-b </i>тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми.
Каждый голосующий на выборах вносит в избирательный бюллетень фамилии<i> n </i>кандидатов. На избирательном участке находится<i> n+</i>1урна. После выборов выяснилось, что в каждой урне лежит по крайней мере один бюллетень и при всяком выборе(<i>n+</i>1)-го бюллетеня по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.
В пространстве даны<i> n </i>точек общего положения (никакие три не лежат на одной прямой, никакие четыре не лежат в одной плоскости). Через каждые три из них проведена плоскость. Докажите, что какие бы<i> n-</i>3точки в пространстве ни взять, найдется плоскость из проведенных, не содержащая ни одной из этих<i> n-</i>3точек.
В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.
На выборах в городскую Думу каждый избиратель, если он приходит на выборы, отдает голос за себя (если он является кандидатом) и за тех кандидатов, которые являются его друзьями. Прогноз социологической службы мэрии считается хорошим, если в нем правильно предсказано количество голосов, поданных хотя бы за одного из кандидатов, и нехорошим в противном случае. Докажите, что при любом прогнозе избиратели могут так явиться на выборы, что этот прогноз окажется нехорошим.
Члены Государственной Думы образовали фракции так, что для любых двух фракций<i> A </i>и<i> B </i>(не обязательно различных)<i> <img src="/storage/problem-media/109909/problem_109909_img_2.gif"> </i>– тоже фракция (через<i> <img src="/storage/problem-media/109909/problem_109909_img_3.gif"> </i>обозначается множество всех членов Думы, не входящих в<i> C </i>). Докажите, что для любых двух фракций<i> A </i>и<i> B </i><i> A<img src="/storage/problem-media/109909/problem_109909_img_4.gif"> B </i>– также фракция.
На плоскости рассматривается конечное множество равных, параллельно расположенных квадратов, причем среди любых<i> k+</i>1квадратов найдутся два пересекающихся. Докажите, что это множество можно разбить не более чем на2<i>k-</i>1непустых подмножеств так, что в каждом подмножестве все квадраты будут иметь общую точку.
Пусть<i> M={x<sub>1</sub>, .., x</i>30<i>} </i>– множество, состоящее из 30 различных положительных чисел;<i> A<sub>n</sub> </i>(1<i><img src="/storage/problem-media/109798/problem_109798_img_2.gif"> n<img src="/storage/problem-media/109798/problem_109798_img_2.gif"> </i>30) – сумма всевозможных произведений различных<i> n </i>элементов множества<i> M </i>. Докажите, что если<i> A</i>15<i>>A</i>10, то<i> A<sub>1</sub>></i>1.
Числовое множество<i> M </i>, содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов<i> a,b,c </i>из<i> M </i>число<i> a</i>2<i>+bc </i>рационально. Докажите, что можно выбрать такое натуральное<i> n </i>, что для любого<i> a </i>из<i> M </i>число<i> a<img src="/storage/problem-media/109780/problem_109780_img_2.gif"> </i>рационально.