Олимпиадные задачи из источника «выпуск 6» - сложность 1-3 с решениями
выпуск 6
НазадВ углу шахматной доски стоит фигура. Первый игрок может ходить ею два раза подряд как обычным конём (на два поля в одном направлении и на одно – в перпендикулярном), а второй – один раз как конём с удлинённым ходом (на три поля в одном направлении и на одно – в перпендикулярном). Так они ходят по очереди. Первый стремится к тому, чтобы поставить фигуру в противоположный угол, а второй – ему помешать. Кто из них выигрывает (размеры доски – <i>n×n</i>, где <i>n</i> > 3)?
В последовательности троек целых чисел (2, 3, 5), (6, 15, 10), ... каждая тройка получается из предыдущей таким образом: первое число умножается на второе, второе – на третье, а третье – на первое, и полученные произведения дают новую тройку. Докажите, что ни одно из чисел, получаемых таким образом, не будет степенью целого числа: квадратом, кубом и т.д.