Олимпиадные задачи из источника «выпуск 3» - сложность 1-3 с решениями

a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.

б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.

В равнобедренном треугольнике <i>ABC</i>  (<i>AB = AC</i>)  угол <i>A</i> равен α. На стороне <i>AB</i> взята точка <i>D</i> так, что  <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>.  Найдите сумму  <i>n</i> – 1  углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей:

  а) при  <i>n</i> = 3;

  б) при произвольном <i>n</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка