Олимпиадные задачи из источника «1996 год» для 11 класса - сложность 3 с решениями

В равнобедренном треугольнике <i>ABC</i>  (<i>AB = AC</i>)  угол <i>A</i> равен α. На стороне <i>AB</i> взята точка <i>D</i> так, что  <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>.  Найдите сумму  <i>n</i> – 1  углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей:

  а) при  <i>n</i> = 3;

  б) при произвольном <i>n</i>.

Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом только по целым сторонам, так, что общая сторона двух треугольников всегда служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.

Дано <i>n</i> чисел, <i>p</i> – их произведение. Разность между <i>p</i> и каждым из этих чисел – нечётное число. Докажите, что все данные <i>n</i> чисел иррациональны.

Существуют ли такие

  а) 4 различных натуральных числа;

  б) 5 различных натуральных чисел;

  в) 5 различных целых чисел;

  г) 6 различных целых чисел,

что сумма каждых трёх из них – простое число?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка