Олимпиадные задачи из источника «7 класс»

а) Аборигены поймали Кука и просят за его выкуп ровно 455 рупий 50 монетами. Смогут ли соратники Кука выкупить его на таких условиях, если в тех краях имеют хождение только монеты в 5, 17 и 31 рупии?

б) А если бы аборигены хотели получить сумму в 910 рупий 50 монетами по 10, 34 и 62 рупии?

Петя тратит &frac13; своего времени на игру в футбол, &frac15; – на учебу в школе, &frac16; – на просмотр кинофильмов, <sup>1</sup>/<sub>70</sub> – на решение олимпиадных задач и &frac13; – на сон. Можно ли так жить?

На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью?

По кругу расставлены 15 натуральных чисел. Докажите, что найдутся два соседних числа такие, что после их выкидывания оставшиеся числа нельзя разбить на две группы с равной суммой.

Можно ли расставить знаки «+» или «–» между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?

После проверки диктанта выяснилось, что учеников, которые ошиблись при написании слова «интеллект» в точности столько же, сколько написавших это слово правильно. Могло ли за этот диктант пятерок быть поставлено ровно на 15 меньше, чем остальных оценок?

Петя сложил несколько чисел, среди которых было <i>N</i> чётных и <i>M</i> нечётных. Вы можете спросить у Пети про одно из чисел <i>N</i> или <i>M</i>, на ваш выбор, чётное ли оно. Достаточно ли этого, чтобы узнать, чётной или нечётной будет полученная Петей сумма?

Сможете ли вы найти шесть целых чисел, сумма и произведение которых являются нечётными числами? А двести?

Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10?

Сумма трёх чисел чётна. Каким — чётным или нечётным — будет их произведение?

Как вы считаете, какой — чётной или нечётной — будет сумма: а) двух чётных чисел; б) двух нечётных чисел; в) чётного и нечётного чисел? Ответ обоснуйте.

Юра, Лёша и Миша коллекционируют марки. Количество Юриных марок, которых нет у Лёши, меньше, чем количество марок, которые есть и у Юры, и у Лёши. Точно так же, число Лёшиных марок, которых нет у Миши, меньше, чем число марок, которые есть и у Лёши и у Миши. А число Мишиных марок, которых нет у Юры, меньше, чем число марок, которые есть и у Юры и у Миши. Докажите, что какая-то марка есть у каждого из трех мальчиков.

Ученики 7 класса решали две задачи. В конце занятия учитель составил четыре списка: I – решивших первую задачу, II – решивших только одну задачу, III – решивших по крайней мере одну задачу, IV – решивших обе задачи. Какой из списков самый длинный? Могут ли два списка совпадать по составу? Если да, то какие?

Сколько существует натуральных чисел, не превосходящих 1000, которые делятся на 3? На 5? На 15? Не делятся ни на 3, ни на 5?

В летнем лагере 70 ребят. Из них 27 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов; 3 спортсмена посещают и драмкружок, и хор. Сколько ребят не поют в хоре, не увлекаются спортом и не занимаются в драмкружке?

В классе все увлекаются математикой или биологией. Сколько человек в классе, если математикой занимаются 15 человек, биологией – 20, а математикой и биологией – 10?

В киоске около школы продается мороженое двух видов: «Спортивное» и «Мальвина». На перемене 24 ученика успели купить мороженое. При этом 15 из них купили «Спортивное», а 17 – мороженое «Мальвина». Сколько человек купили мороженое обоих сортов?

Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.

Можно ли разрезать прямоугольник размерами 78×55 см на прямоугольники 5×11 см?

В Таниной квартире имеется 8 розеток, 21 тройник и неограниченный запас утюгов. Какое наибольшее число утюгов Таня может включить в сеть одновременно?

Игорь закрасил в квадрате 6×6 несколько клеток. После этого оказалось, что во всех квадратиках 2×2 одинаковое число закрашенных клеток и во всех полосках 1×3 одинаковое число закрашенных клеток. Докажите, что старательный Игорь закрасил все клетки.

Найдите площадь фигур, изображенных на рисунке. <img src="/storage/problem-media/103947/problem_103947_img_2.png">

Число A положительно, В отрицательно, а C равно нулю. Каков знак числа AB+ AC+BC?

Конфеты "Сладкая математика" продаются по 12 штук в коробке, а конфеты "Геометрия с орехами" – по 15 штук в коробке.

Какое наименьшее число коробок конфет того и другого сорта необходимо купить, чтобы тех и других конфет было поровну?

Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка