Олимпиадные задачи из источника «9,10 класс, 1 тур» - сложность 3 с решениями

Доказать, что если$\alpha$и$\beta$— острые углы и$\alpha$<$\beta$, то<div align="CENTER"> $\displaystyle {\frac{{\rm tg}\alpha}{\alpha}}$ < $\displaystyle {\frac{{\rm tg}\beta}{\beta}}$. </div>

Через точку<i>A</i>, лежащую внутри угла, проведена прямая, отсекающая от этого угла наименьший по площади треугольник. Доказать, что отрезок этой прямой, заключённый между сторонами угла, делится в точке<i>A</i>пополам.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка