Олимпиадные задачи из источника «1950 год» для 10 класса - сложность 3-4 с решениями

Около сферы описан пространственный четырёхугольник. Докажите, что четыре точки касания лежат в одной плоскости.

Числа 1, 2, 3, ..., 101 выписаны в ряд в каком-то порядке.

Докажите, что из них можно вычеркнуть 90 так, что оставшиеся 11 будут расположены по их величине (либо возрастая, либо убывая).

В выпуклом 1950-угольнике проведены все диагонали. Они разбивают его на многоугольники. Возьмём среди них многоугольник с самым большим числом сторон. Какое наибольшее число сторон он может иметь?

Из двух треугольных пирамид с общим основанием одна лежит внутри другой. Может ли быть сумма ребер внутренней пирамиды больше суммы ребер внешней?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка