Олимпиадные задачи из источника «7 класс, 2 тур» для 5-9 класса - сложность 2 с решениями

Дан отрезок <i>AB</i>. Найдите геометрическое место вершин <i>C</i> остроугольных треугольников <i>ABC</i>.

Докажите, что если квадрат числа начинается с 0,999...9 (100 девяток), то и само число начинается с 0,999...9 (100 девяток).

Для выпуклого четырёхугольника<i>ABCD</i>соблюдено условие:<i>AB</i>+<i>CD</i>=<i>BC</i>+<i>DA</i>. Докажите, что окружность, вписанная в$\Delta$<i>ABC</i>, касается окружности, вписанной в$\Delta$<i>ACD</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка